
CYBERSECURITY FOR
EMBEDDED SYSTEMS
SEBASTIANO FABRIZIO FINOCCHIARO

POLITECNICO DI TORINO–DAUIN–COMPUTER AND CONTROL ENGINEERING
PHD CYCLE: XXXII
ACADEMICSUPERVISOR: GIANPIEROCABODI

Outline

Introduction

Cyber Physical Systems

Formal verification

Taint properties

Path properties

Secure path verification

Spectre and Meltdown

Conclusions

2

General overview

Research topic: CYBERSECURITY FOR EMBEDDED SYSTEMS

Collaboration with Magneti Marelli:
This PhD grant is funded by Magneti Marelli – Automotive Lighting

(Orbassano)

3

Verification
methodology

Formal Non-formal

Model
checking

Equivalence
checking

• Dev. Process
• Standards
• Methods

…

• Tools
• Algorithms

…

…

Model checking vs traditional verification

4

Black box

Traditional approach

Test vectors Output

• Cannot cover all possible cases
• Likelihood of uncovered subtle bugs

Testing is
Exploration and

Learning

Test vectors Output

Model checking vs traditional verification

5

Model Checking

• Equivalent to simulating all cases in simulation
• No bug (according to the property)
• More complex but more exhaustive then simulation
• Suited for hard problems

System

Requirements

Model

Properties

Model
checker

Prop. verified

Prop. failed

Counterexample

Checking is
Confirmation

Testing vs Model Checking

6

State space explosion

7

The global state space of a concurrent system has size
exponential in the number of concurrent processes (i.e. 2n)

State
explosion

State space explosion

8

Approaches to the state space explosion:

Binary Decision Diagrams (BDDs)

Partial order reduction

Bounded Model Checking (BMC)

Abstraction and refinement

Cyber Physical Systems

Cyber-Physical Systems (CPS) are integrations of computation
and physical processes within a networked environment

9

Memory µP

Hardware units

Se
n

so
rs

A
ct

u
at

o
rs

CONTROL/COMPUTING

EMBEDDED SYSTEM

Cyber Physical Systems

10

CPS

CPS

CPS

CPS

CPS

Communication
networks

Cyber Physical Systems

11

Security requirements: CIA Triad

12

INFORMATION SECURITY

CONFIDENTIALITY

INTEGRITY AVAILABILITY

Trusted Platform Module/Root of trust

13

Remote Attestation

14

Abstract model

15

Based on the remote attestation architectures SMART and SANCUS

Security enforcing component

Abstract model: mapping

16

Mapping between the abstract model, SMART and SANCUS

Research questions

17

Is it possible to read any security related data from a certain location?

Is it possible to modify any security related data?

Are there failure modes that would compromise any security related data?

Security requirements

Key secrecy

Exclusive access

No leakage

Isolation (Immutability and Mode separation)

Uninterruptibility

Fixed entry point

Taint Property

18

SRC

DST

Prohibited
state

TAINT

System transitions

REACHABLE
STATE SPACE

Taint source Taint propagation Taint sink1 2 3

Taint Property: example

19

Example of Confidentiality: Exclusive access to the key

All user programs (untrusted entities) are not allowed to load the key K into any CPU
registers.
Only the Attestation Entity (AE) is allowed to access the key. The Memory Access
Control (MAC) logic implements the controls related to key secrecy.
The MAC checks if the address in the Program Counter (PC) belongs to the AE address
space.

TAINT: only the Attestation Entity can access the key, therefore the taint could be any
untrusted entity accessing the memory region.

Experimental results

20

Contributions

21

• Abstraction and modelling of a specific class of security
systems: root of trust/remote attestation

• Definition of a portfolio of security-related Taint Properties

• Formal verification on real architectures

• Model checker support

[1] Cabodi, G.; Camurati, P.; Finocchiaro, S.F.; Loiacono, C.; Savarese, F.; Vendraminetto, D. (2016)
“Secure Embedded Architectures: Taint Properties Verification”. In: International Conference on
Development and Application Systems.

From Taint to Path properties

22

Taint properties are information flow properties because they involve data
propagation through the system, but they only check for the final state.

What if we want to express properties about the propagation itself?

PATH
PROPERTY!

Path Property

23

SRC

DST

Initial
configuration of

the system

End
configuration
of the system

Unwanted
behavior

Correct
behavior

Path Property

24

(1) PRECONDITION CLAUSE

(2) FROM CLAUSE (3) TO CLAUSE

(1) Introduces contraints for the verification
(2) (3) Represent src & dst for illegal path

Example of Confidentiality: Exclusive access to the key

Contributions

25

Definition of a new class of property: Path property

Definition of a portfolio of Path properties

Introduction of a methodology to verify Path properties

Verification of Path properties on two selected embedded
architectures

Model checker support

[2] Cabodi, G.; Camurati, P.; Finocchiaro, S.F.; Loiacono, C.; Savarese, F.; Vendraminetto, D. (2016)
“Secure Path Verification”. In: IEEE International Verification and Security Workshop.

Secure path verification

26

Combine the two approaches together:

• Portfolio of security properties, both Taint (now called State properties: SP)
and Path (PP) Properties

• Systematic comparison between SPs and PPs

• Definition and implementation of a verification approach for SPs and PPs
within a standard model checker

• Feasibility of the combined approach and comparing SPs and PPs in terms of
performance

• Expressivity analysis: when it is better to use one property or the other

[3] Cabodi, Gianpiero, et al. "Embedded systems secure path verification at the hardware/software interface."
IEEE Design & Test 34.5 (2017): 38-46.

Speculation based attacks

27

In 2018 massive security vulnerabilities landed on the computing
world: Meltdown and Spectre

Speculation based attacks

28

Research questions

Spectre/Meltdown: groundbreaking attacks!

How do we detect such attacks?

Why didn’t hardware designers discover such design flaws?

Is there a verification method that applies to such
vulnerabilities?

Can we prevent these attacks in the future?

29

Microarchitectural state
vs

Architectural states

30

Side channel

31

Transmitter
Cache

Receiver

Covert Channel

Side
Channel

Secret

Speculative
Execution

Normal
Execution

Attacker

Attack description

32

1. The content of an attacker-chosen memory location, which is directly
unreachable by the attacker, is loaded into a register

2. A transient instruction accesses a cache line based on the secret content
of the register

3. The attacker uses a covert channel to retrieve the accessed cache line
and hence the secret stored at the chosen memory location

1 ; R1 = invalid address

2 ; R3 = probe array

3 LW R2, 0(R1) ; illegal read

4 ADD R1, R2, R3 ; offset = probe_array+secret

5 LW R1, 0(R1) ; read from secret-dependent offset

Processor model

33

• Based on the DLX architecture (academic RISC architecture)

• Pipelined (7 stages)

• Speculation-ready

• Out of order execution
 Reorder buffer

 Reservation stations

Processore model

Based on Hennessy’s DLX RISC processor

34

Abstraction and refinement

35

State
explosion

Data abstraction

36

Any data (thus model behaviour) can be over-approximated provided that
verification is sound, i.e. an abstract counterexample always implies a
concrete one.

R0 R1 … … Rn-1

 Bit width reduction:

 Processor logic and arithmetic ⇒ considered correct (i.e. already
verified)

 Branch misprediction logic ⇒ replaced by a non-deterministic choice

𝑉𝑖 ⇒ 𝑉𝑖
+

Data abstraction

37

Logic is enhanced with tainting: taint value 𝑇𝑖 is added

Concrete model Abstract model

𝑉𝑖 {𝑉𝑖
+, 𝑇𝑖}

𝑉𝑘 = 𝑂𝑃(𝑉𝑖 , 𝑉𝑗) 𝑉𝑘
+ = 𝑂𝑃(𝑉𝑖

+, 𝑉𝑗
+)

− 𝑇𝑘 = 𝑂𝑃𝑇(𝑉𝑖
+, 𝑇𝑖 , 𝑉𝑗

+, 𝑇𝑗)

Data evaluation

Taint propagation

Caveat: transformations must be sound

𝑇𝑘 = 𝑂𝑃𝑇 𝑇𝑖 , 𝑇𝑗 = 𝑇𝑖 ∨ 𝑇𝑗

Example:

Data abstraction

38

The degree of abstraction could be tuned between two corner cases:

1) Full data dependance: data values are fully involved in taint computation

2) Full data abstraction: taint propagation does not involve data values

- Bitwise OR when 𝑉𝑖
+ is all 1’s

- Multiplication when 𝑉𝑖
+ = 0

⇓
Mask the taint on the other operand
𝑇𝑗

The propagation happens whenever
at least one of the operands is tainted

⇓

𝑇𝑘 = 𝑂𝑃𝑇 𝑇𝑖 , 𝑇𝑗 = 𝑇𝑖 ∨ 𝑇𝑗

The choice does have a significant impact on the soundness of the overall
approach

1 2

EXAMPLES

Taint source

39

A taint is injected at the memory data input, whenever a
protected/invalid address is used.

𝑀𝐷𝑖𝑛
= 𝑝𝑟𝑜𝑡𝑒𝑐𝑡𝑒𝑑 𝑀𝐴𝑑𝑑𝑟 ? 𝑇𝐴𝐼𝑁𝑇 ∶ 𝑁𝑂𝑇𝐴𝐼𝑁𝑇

SRC DST

Information Flow

propagation

Taint sink: Property

40

SRC DST

Information Flow

propagation

Target: What do we observe? Memory address logic

𝑀𝐴𝑑𝑑𝑟 == 𝑇𝐴𝐼𝑁𝑇

Correctness

41

The correctness of our approach is related to the completeness
and the soundess of model transformations.*

The completeness is guaranteed under two conditions:

• Mimic real sequences of instructions in an out-of-order
processor

• The abstract reorder buffer takes into account source-to-sink
taint propagation delay

*Burch J.R., Dill D.L., Automatic verification of pipelined microprocessors control. (1994)

Manolios et al., A complete compositional reasoning framework for the efficient verification of pipelined
machines (2005)

Correctness

42

Model approximation ⇒ False positives

Taint encoding correctness presents two possible choices:

• Adopt a finer grained taint abstraction (refine out all false
positive counterexamples)

• Accept false positives and then post-process them: treat them
as constraints in a following model checker run.

Completeness is achieved as this approach over-approximates
the real behaviour

Experimental results

43

BMC run found a counterexample of 9 clock steps in less than 1
second!

Concrete Abstract

AND gates 120K 3K

Latches 3K 0.1K

Conclusions

44

• The counterexample showed what we expected: a sequence of
instructions leaking sensitive data

• Security bug removed (i.e. fixed by a patch) and model checked
again: no counterexamples found

• Though preliminary, this approach is feasible as shown by
experimental results

[4] Cabodi, G., Camurati, P., Finocchiaro, F., & Vendraminetto, D. (2019, April). “Model Checking Speculation-
Dependent Security Properties: Abstracting and Reducing Processor Models for Sound and Complete Verification”. In
International Conference on Codes, Cryptology, and Information Security (pp. 462-479). Springer, Cham.
[5] Cabodi, G., Camurati, P., Finocchiaro, F., & Vendraminetto, D. “Model Checking Speculation-Dependent Security
Properties: Abstracting and Reducing Processor Models for Sound and Complete Verification”. In: Electronics 2019, 8,
1057- ISSN 2079-9292.

Future work

45

• Apply this approach to another class of attacks

• Fully or partially automate the abstraction and refinement
process

• Proof of completeness and soundness

Thank you!

46

