CYBERSECURITY FOR
EMBEDDED SYSTEMS

SEBASTIANO FABRIZIO FINOCCHIARO

POLITECNICO DI TORINO—DAUIN —COMPUTER AND CONTROL ENGINEERING
PHD CYCLE: XXXI|

ACADEMIC SUPERVISOR: GIANPIERO CABODI

<7, [POLITECNICO
5 ~2\ DI TORINO
ﬁ-g ﬁ,ﬁ_mmj% ;éo

Outline

»Introduction

»Cyber Physical Systems
»Formal verification
»Taint properties

»Path properties
»>Secure path verification
»>Spectre and Meltdown
»Conclusions

General overview

»Research topic: CYBERSECURITY FOR EMBEDDED SYSTEMS

> Collaboration with Magneti Marelli: MﬁGREIE.I

»This PhD grant is funded by Magneti Marelli — Automotive Lighting

(Orbassano)
Verification
/ methodology \
Formal Non-formal
Model Equivalence e Deuv. Process * Tools
checking checking e Standards e Algorithms

* Methods

Model checking vs traditional verification

Traditional approach

Test vectors
S ——

Output

Test vectors Black box Output

e Cannot cover all possible cases
* Likelihood of uncovered subtle bugs

Model checking vs traditional verification

Model Checking

System Model Prop. verified

Model

checker y > Prop.failed
|

Counterexample

e Equivalent to simulating all cases in simulation

* No bug (according to the property)

* More complex but more exhaustive then simulation
e Suited for hard problems

Testing vs Model Checking

testing: model checking:
based on input set {d} all program state are explored
{d} /-J' only one path until none left or defect found

executed at a time

backtrack __.

-
’
7’
4
’

/™

State space explosion

The global state space of a concurrent system has size
exponential in the number of concurrent processes (i.e. 2")

State
explosion

State space explosion

Approaches to the state space explosion:
»>Binary Decision Diagrams (BDDs)
»Partial order reduction

»Bounded Model Checking (BMC)
»Abstraction and refinement

L
Cyber Physical Systems

»>Cyber-Physical Systems (CPS) are integrations of computation
and physical processes within a networked environment

A
\ 4

\ 4
A 4

Actuators

Hardware units

CONTROL/COMPUTIN

EMBEDDED SYSTEM

Cyber Physical Systems

Communication
networks

CPS CPS

CPS

Cyber Physical Systems

Sensor
Node #1

Network
Coordinator.

Data Repository &
~ Evaluation System

Piezoelectric
Transducer #1

= Monitored
Area

Piezoelectric Wire __ Actuating _ Sensing
Transducer Connection Control Signal

Traffic Flow Monitor

Accident Report

Route Plan

Scheduling

Security requirements: CIA Triad

CONFIDENTIALITY

INFORMATION SECURITY

[Chaiieng;‘r

RNG

|

Nonce

+

Reference
PCR

]

Reference
Hash

Verification

Hash

' Decryption

=+

Signature Key

Challenge

Response

'*

Trusted Platform Module/Root of trust

Trusted Platform

Q= public
°= private

Nonce

<+
PCR

|

Hash

Encryption

Signature

TPM_Quote

N
o

i

11

Storage Root Key

=

Signature Key

Remote Attestation

Verifier Prover

Generate nonce n

Sends parameters to the Prover n, &b, X

attestation_token = attestation_routine(n,a,b,X,K)

Verifies attestation_token

Abstract model

Based on the remote attestation architectures SMART and SANCUS

Code To Attest Protected Data
{CA) {PD)

' Attestation

CRU v Entity (AE)
i i
i i

' '
' '
' '
: Access : ROM
' '
' '

. S
Abstract model: mapping

Mapping between the abstract model, SMART and SANCUS

Abstract Model SMART SANCUS
Attestation Entity (AE) Attestation Routine (ROM) | Text Section of SMs (RAM)
Code to Attest (CA) Code (A,B) SM
Memory Access Control (MAC) Bus Controller Memory Access Logic (MAL)
Loader - Modified CPU

Research questions

> s it possible to read any security related data from a certain location?
> s it possible to modify any security related data?

> Are there failure modes that would compromise any security related data?

$

Security requirements
» Key secrecy
» Exclusive access
> No leakage
> |solation (Immutability and Mode separation)
> Uninterruptibility
> Fixed entry point

. u
Taint Property

@ Taint sink

@Taint source !@Taint propagation

REACHABLE
STATE SPACE

TAINT

i
i
i
i
i
i
|
@ | System transitions
|
i
i
i
i
i
i
i

Prohibited

state

Taint Property: example

Example of Confidentiality: Exclusive access to the key

All user programs (untrusted entities) are not allowed to load the key K into any CPU

registers.
Only the Attestation Entity (AE) is allowed to access the key. The Memory Access

Control (MAC) logic implements the controls related to key secrecy.
The MAC checks if the address in the Program Counter (PC) belongs to the AE address

space.

AG (—lisinAEscope A fetchedInstr = load(key addr, CPU.registerX)

— AX (—.isjn(K, C’PU.Tegz'sterX)))

TAINT: only the Attestation Entity can access the key, therefore the taint could be any
untrusted entity accessing the memory region.

Experimental results

SMART SANCUS
Time/s| | Result | Time/s| | Result
prop ksl | 648.22 | PASS | 518.82 | PASS
prop ks2 | 357.45 | PASS | 254.35 | PASS
prop._ms 156.7 | PASS | 116.74 | PASS
prop_av 378.24 | FAIL | 245.29 | FAIL

Property

SMART SANCUS
1000 T T T 1000 T I T

ITP rzz7) ITP rzz72
PDR PDR [
8OO oo el T 1 1)) . L 7 R s : 1) D) —

1 i P 1 £

Time [s]
Time [s]
]

400 —---eeeeeeee N N R ., NRURERNARNR f S /7 N——— 400 - RN /, S——

]
7 g
200 Lt sesannssnass {7 RELE NN 7 - ,. H [Rr— 200 ORI P B o 1 - IO H ‘......4..‘......4,.... N 7 ——
- a ¢
0 IH | 0 | | IH ﬁ |
“» P

Contributions

- Abstraction and modelling of a specific class of security
systems: root of trust/remote attestation

- Definition of a portfolio of security-related Taint Properties

« Formal verification on real architectures

3

- Model checker support

[1] Cabodi, G.; Camurati, P.; Finocchiaro, S.F.; Loiacono, C.; Savarese, F.; Vendraminetto, D. (2016)
“Secure Embedded Architectures: Taint Properties Verification”. In: International Conference on
Development and Application Systems.

From Taint to Path properties

Taint properties are information flow properties because they involve data
propagation through the system, but they only check for the final state.

What if we want to express properties about the propagation itself?

PATH
PROPERTY!

Path Property

Correct
behavior

Unwanted
behavior

Initial
configuration of
the system

End
configuration
of the system

. S
Path Property

(1) PRECONDITION CLAUSE

(2) FROM CLAUSE (3) TO CLAUSE

(1) Introduces contraints for the verification

(2) (3) Represent src & dst for illegal path

Example of Confidentiality: Exclusive access to the key

assert_no_path from AE to CPU.registerX

pre__cond :

—is_in_AFE_scope A load(key addr, C PU.registerX)

Contributions

> Definition of a new class of property: Path property
> Definition of a portfolio of Path properties
> Introduction of a methodology to verify Path properties

> Verification of Path properties on two selected embedded
architectures

»Model checker support

[2] Cabodi, G.; Camurati, P.; Finocchiaro, S.F.; Loiacono, C.; Savarese, F.; Vendraminetto, D. (2016)
“Secure Path Verification”. In: IEEE International Verification and Security Workshop.

Secure path verification

Combine the two approaches together:

Portfolio of security properties, both Taint (now called State properties: SP)
and Path (PP) Properties

Systematic comparison between SPs and PPs

Definition and implementation of a verification approach for SPs and PPs
within a standard model checker

Feasibility of the combined approach and comparing SPs and PPs in terms of
performance

Expressivity analysis: when it is better to use one property or the other

[3] Cabodi, Gianpiero, et al. "Embedded systems secure path verification at the hardware/software interface."

IEEE Design & Test 34.5 (2017): 38-46.

Speculation based attacks

In 2018 massive security vulnerabilities landed on the computing
world: Meltdown and Spectre

"GLOBAL 7|
COMPUTER CHIP SCARE
The bugs are known as 'Spectre' and 'Meltdown'
BERME WORLD NEWS DAX 13167.89 189.68

ary
“ e -

' ¢ ‘ [WINTER STORM

AL R ’,;' ;:::V L

NEWS INTEL REVEALS DESIGN FLAW THAT 2
» ALERT COULD ALLOW HACKERS TO ACCESS DATA || &

Speculation based attacks

Meltdown ,ﬁo Spectre

Affected CPU Types Intel, Apple Intel, Apple, ARM, AMD
Execute Code Execute Code
At vaciol on the System on the System
Intel Privilege Escalation & Branch Prediction &
Method Speculative Execution Speculative Execution
(CVE-2017-5754) (CVE-2017-5715/-5753)
Exploit Path Read Kernel Memory from Read Memory Contents
P User Space from Other Applications
Remediation Software Patches Software Patches

Research questions

»>Spectre/Meltdown: groundbreaking attacks!
»How do we detect such attacks?
»>Why didn’t hardware designers discover such design flaws?

>Is there a verification method that applies to such
vulnerabilities?

»Can we prevent these attacks in the future?

Microarchitectural state
VS
Architectural states

Exception Handling/
Suppression

Transient Accessed
< Secret @om

Instructions

Microarchitectural

State Change

Transfer|(Covert Channel) :
b d h J

|
|

|

| |

C{} : Architectural Recovery | Recovered !
|

| l

| l

State Secret @

Side channel

Transmitter Receiver

Secret Covert Channel

Speculative Side Normal
Execution Channel Execution

2
Attack description

1.

The content of an attacker-chosen memory location, which is directly
unreachable by the attacker, is loaded into a register

A transient instruction accesses a cache line based on the secret content
of the register

The attacker uses a covert channel to retrieve the accessed cache line
and hence the secret stored at the chosen memory location

1, R1 =invalid address

2, R3 = probe array

3LW R2,0(R1) ;illegal read

4 ADD R1, R2, R3 ; offset = probe_array+secret

5LW RT1,0(R1) ;read from secret-dependent offset

Processor model

- Based on the DLX architecture (academic RISC architecture)
- Pipelined (7 stages)
- Speculation-ready

- Out of order execution
= Reorder buffer
= Reservation stations

Processore model

Based on Hennessy’s DLX RISC processor

A A

ROB |
L A A
L Register file > o
Branch Prediction = *
Reservation cu .|
A * stations 7
= PC > »> AL exceplion —
» Decoding Logic »| —
.| Misprediction
LI LI L | 7 esception [| L L | LI
.| Memory
7l exception
L 4 L 4
Memory

IF1 IF2 ID EX M1 M2

. R
Abstraction and refinement

State
explosion

Data abstraction

Any data (thus model behaviour) can be over-approximated provided that
verification is sound, i.e. an abstract counterexample always implies a
concrete one.

> Bit width reduction: V; = Vi+

> Processor logic and arithmetic = considered correct (i.e. already
verified)

> Branch misprediction logic = replaced by a non-deterministic choice

Data abstraction

Logic is enhanced with tainting: taint value T; is added

Concrete model Abstract model

Vi ann
Data evaluation ——> Vi = OP(V;,V)) VS = op([/l.+, Vj+)
Taint propagation —> - Ty = OPT(Vi+, T;, Vj+rTj)
Example:

T, = OPT(T,T;) =T, VT,

Caveat: transformations must be sound

Data abstraction

The degree of abstraction could be tuned between two corner cases:

1) Full data dependance: data values are fully involved in taint computation

2) Full data abstraction: taint propagation does not involve data values

EXAMPLES

o
- Bitwise OR when V" is all 1’s
- Multiplication when V;* =0
U
Mask the taint on the other operand

Tj

The propagation happens whenever
at least one of the operands is tainted

[
Ty = OPT(T, T;)) =T, VT,

The choice does have a significant impact on the soundness of the overall

approach

Information Flow

Taint source V_

A taint is injected at the memory data input, whenever a
protected/invalid address is used.

Mp, = protected(Myqqr) ? TAINT : NOTAINT

Information Flow

Taint sink: Property s

@

Target: What do we observe? Memory address logic —l

D—
> Memory
|-queus > ROB

h 4

r

-

-~

MAddT == TAINT

Reqgisters

: ®
Ressrvation
stations

e

Execution units

l

CDB

Correctness

The correctness of our approach is related to the completeness
and the soundess of model transformations.*

The completeness is guaranteed under two conditions:

- Mimic real sequences of instructions in an out-of-order
processor

- The abstract reorder buffer takes into account source-to-sink
taint propagation delay

*Burch J.R., Dill D.L., Automatic verification of pipelined microprocessors control. (1994)
Manolios et al., A complete compositional reasoning framework for the efficient verification of pipelined
machines (2005)

Correctness

Model approximation = False positives

Taint encoding correctness presents two possible choices:

- Adopt a finer grained taint abstraction (refine out all false
positive counterexamples)

- Accept false positives and then post-process them: treat them
as constraints in a following model checker run.

Completeness is achieved as this approach over-approximates
the real behaviour

Experimental results

AND gates 120K 3K
Latches 3K 0.1K

BMC run found a counterexample of 9 clock steps in less than 1
second!

Conclusions

- The counterexample showed what we expected: a sequence of
instructions leaking sensitive data

- Security bug removed (i.e. fixed by a patch) and model checked
again: no counterexamples found

- Though preliminary, this approach is feasible as shown by
experimental results

[4] Cabodi, G., Camurati, P, Finocchiaro, F., & Vendraminetto, D. (2019, April). “Model Checking Speculation-
Dependent Security Properties: Abstracting and Reducing Processor Models for Sound and Complete Verification”. In
International Conference on Codes, Cryptology, and Information Security (pp. 462-479). Springer, Cham.

[5] Cabodi, G., Camurati, P, Finocchiaro, F., & Vendraminetto, D. “Model Checking Speculation-Dependent Security
Properties: Abstracting and Reducing Processor Models for Sound and Complete Verification”. In: Electronics 2019, 8 oy
1057- ISSN 2079-9292. FALS

Future work

- Apply this approach to another class of attacks

- Fully or partially automate the abstraction and refinement
process

* Proof of completeness and soundness

Thank you!

